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Chain Mechanism for the Autoxidation of the 
Isopropylehromium(III) Cation 

Sir: 

Primary organochromium cations in the series (H20)5-
CrR2 + are stable toward molecular oxygen in aqueous solution; 
exceptions are the benzylchromium(III) ion (which reacts 
indirectly by unimolecular homolysis1) and isopropylchrom-
ium(III) ion (and other secondary and tertiary alkyls) whose 
unusual reaction with O2 is the subject of this report. 

Solutions of (H20)sCrCH(CH3)22 + were prepared and 
purified as before.2 Kinetic studies of its reaction with oxygen 
were carried out using both spectrophotometric techniques and 
an oxygen sensing electrode. In the former case, a gentle stream 
of a known O2-N2 mixture was bubbled continuously through 
the spectrophotometric cell, but out of the optical path, to 
ensure a constant concentration of dissolved oxygen.3 

Attempts were made to fit the data by a number of kinetic 
equations, but only a rate law with a 3/2-power dependence 
on [CrCH(CH3)2

2 +] gave an acceptable fit within a given run 
and a constant value of kexp over the concentration ranges 
examined. A convincing illustration of the 3/2 order comes 
from a log-log plot of the instantaneous reaction rate vs. 
[CrR2+]av A plot incorporating data from a number of runs 
is shown in Figure 1. The data were properly analyzed by plots 
constructed according to the integrated 3/2-order rate law 

-d [CrCH(CH 3 ) 2
2 + ] /d f = A:exp[CrCH(CH3)2

2+]3/2 

The kinetic data and reaction conditions are summarized 
in Table I, and the average value of kexp is 0.60 ± 0.10 dm3/2 

mol - 1 / 2 s_1. The reaction rate is independent of both [H+] and 
[O2] over the ranges studied. 

The organic products4 consist of acetone primarily (~60% 
at 0.002 M H + to 70 ± 5% at 0.1 M H + ) and smaller amounts 
of 2-propanol (~30% at 0.002 M H + to ~20% at 0.10 M H + ) ; 
2-propyl hydroperoxide was not detected. Although Cr(III) 
(a mixture of mainly Cr(H 2 O) 6

3 + and smaller amounts of 
dimeric species) is the primary chromium product, small but 
reproducible yields of HCrCu - were found (26% at 0.01 M 
H + , 13% at 0.1 M H + , 9% at 0.9 M H + ) . 

The following chain mechanism is consistent with the data 
presented:5,6 
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Figure 1. Determination of the 3/2 reaction order from the slopes of plots 
of log (instantaneous reaction rate) vs. log (mean concentration of iso-
propylpentaaquochromium(NI) ion). Both rates and concentrations are 
expressed in absorbance units per 1-cm optical path, D/b. The plots rep­
resent data from four runs at two wavelengths with 103[/-C3H7Cr2+]o = 
1.0 (•); 0.50 (O); 0.20 (A); 0.10 (A). The solid lines are drawn to have 
slopes of exactly 3/2. 

Initiation 

CrCH(CHa) 2
2 + - ^ C r 2 + + -CH(CH3)2 (D 

Propagation 

O2 + -CH(CH3);. -*• -OOCH(CH3)2 (2) 

• -OOCH(CH3)2 

CrOOCH(CH 3 ) 2
2 + + -CH(CH3)2 (3) 

CrCH(CH 3 ) 2
2 + + -OOCH(CH3)2 

3 

Termination 

2-OOCH(CH3)2 • • ( C H 3 ) 2 C = 0 + (CH 3) 2CHOH + O2 

(4) 

With the steady-state approximation for the chain-carrying 
intermediates and the assumption of a long chain length, the 
derived rate equation shows the proper form and identifies the 
experimental rate constant as the composite kexp = &3(&i/ 
2k4y/2. 

The mechanism shows the isopropylperoxochromium(III) 
cation as the immediate product of eq 3. This species is anal­
ogous to the well-characterized isopropylperoxocobaloxime, 
which has been prepared by the reaction of molecular oxygen 
with isopropylcobaloxime.7 Since the CrOOCH(CH 3 ) 2

2 + 

Table I. Kinetic Data for the Reaction of O2 and (H20)5CrCH(CH3)2
2+ in Aqueous Perchloric Acid' 

spectrophotometry b 

O2 electrode^ 
a Using air, pure oxygen 

= 22 ± 1 0C. 

[H+] 

0.01-0.10 
0.01 

initial concn ranges, M 
103[O2]" 103[CrCH(CH3)2

2+] k, dm3/2 mol-'I2 s"1 (runs) 

0.19-1.1 0.1-1.0 0.60 ±0.10 (26) 
0.27 0.09-0.12 0.62 ±0.11(2) 

and a calibrated 52:48 mixture OfO2-N2. * M = 1-00 M (HClO4, LiClO4); T = 25.0 ± 0.5 0C. c ^ = [H+]; T 
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Figure 2. Illustrating the effects of incremental additions of iron(II) ion 
on the rate of reaction of CrCH(CH3)22+ with O2. The runs shown (O) 
had [CrR2+Jo = 0.95 X lO"3 M and [O2]o = 1.1 X 10~3 M (held constant 
by continuous bubbling). At the three points designated by arrows 1-3, 
Fe2+ was injected; the concentrations (M X 103) of Fe2+ and 
CrCH(CH3)2

2+ at these points are, respectively, (1) 0.58, 0.95; (2) 0.28, 
0.51; (3) 0.27, 0.29. Points marked a, b, and c are presumably the times 
at which the inhibiting Fe2+ has been consumed, permitting resumption 
of the rapid chain reaction. For comparison, the continuously decreasing 
trace ( • ) shows the steady reaction at approximately the same initial 
concentration, 1.0 X 10 - 3 M CrR2+, without added iron(II). 

cation has not been identified among the products, it is pos­
tulated to react rapidly with H30+ to produce the ultimate 
products. Considering what is known about the acid decom­
position of the cobalt analogue in both nonaqueous821 and 
aqueous8b solutions, formation of acetone is readily accounted 
for by the reaction 

(H20)5CrOOCH(CH3)22+ + H+ 

-* Cr(H2O)6
3+ + (CHj)2C=O (5) 

We postulate that the peroxochromium complex, unlike its 
cobaloxime analogue, is susceptible to internal oxidation-
reduction. Such processes are invoked to account for the minor 
products, HCr04~ and 2-propanol, and constitute reasonable 
chemistry for this species considering other Cr(III)-peroxide 
reactions.9 The unavailability of this species for direct study 
and observation greatly limits further conclusions concerning 
its reactivity. 

Using an estimate for k\ (<10 - 6 s_1, based on our obser­
vation that homolytic scission1 fails to occur in preference to 
acidolysis10 in the presence of other mild oxidants) and the 
value1' lki, = 3 X 106 dm3 mol-1 s_1, the estimated value of 
£3 is ~106 dm3 mol-1 s_1, consistent with this reaction being 
sufficiently rapid to act as a propagating step. The expression 
for the chain length from this mechanism is 

^ ( A ^ A ^ t C r C T K C H ^ + ] 3 ^ 
Jc,[CrCH(CH3)2

2+] 
which corresponds to a chain length of 19 000 at [CrR2+] = 
10-3 M. 

Addition of Fe2+ prior to or during the reaction produces 
a dramatic lowering of rate, which we attribute to its chain-
breaking reaction with the propagating isopropylperoxy rad­
ical:12 

Fe2+ + -OOCH(CH3)2 =+ 1Fe3+ + (CH3)2C=0 + H2O 
(6) 

Provided that iron(II) is added at a concentration less than that 
of the organochromium cation, the rapid chain reaction will 
then resume after a substantial subsequent period during which 
Fe2+ is oxidized. Injection of small quantities of Fe2+ 

throughout the reaction gives rise to repeated interruption and 

reinitiation of the main reaction as shown in Figure 2. During 
the interrupted segments, the remaining rate is some three-
four times faster than the nonradical spontaneous acidolysis, 
CrCH(CHj)2

2+ + H3O+ = Cr3+
aq + C3H8, suggesting that 

reaction 6 competes favorably but not exclusively with the 
chain-propagation step. Owing to these factors, the rate during 
the inhibition period does not provide an independent measure 
of£i.5-13 

The chain mechanism in reactions 1-4 bears a strong re­
semblance to that claimed in other systems,14-16 particularly 
the autoxidation of organoboranes.17 The results reported here 
appear to be the first indication of such processes in organo­
chromium chemistry,18 however, and may be of broader rele­
vance in considerations of the homogeneous activation of 
molecular oxygen.19 
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A Novel Phase Transfer Catalyst Capable of 
Facilitating Acid-Catalyzed and/or Electrophilic 
Reactions 

Sir: 

Since the beginning of the 1970s, phase transfer catalysis 
(PTC)1'2 has rapidly developed as a synthetic technique. In­
deed, the development of and the interest in PTC is as wide­
spread in industrial circles as in the academia. The general 
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